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1. I N T R O D U C T I O N  

In the two-fluid models for two-phase flow systems the transport processes are governed by two 
sets of  averaged conservation equations, each set representing the macroscopic balance of  the mass, 
momentum and energy of a phase. The two sets of  equations are coupled together through 
interaction terms which represent the transport of the mass, momentum and energy of each phase 
across the phase interface. In general, all interfacial transfer terms which appears in the two-fluid 
models can be exprsesed as the product of  a driving force and the inverse of a length scale Ls at 
the interface (Ishii 1975): 

1 
interfacial transfer term = driving force x - - .  

Ls 

The driving forces are characterized by local transport mechanisms such as molecular and turbulent 
diffusion, whereas the term 1/Ls, which represents the time-average of  the interfacial area per unit 
volume (Kataoka et al. 1986) and is herein referred to as the local specific interfacial area, is related 
to the structure of  the two-phase flow field. Knowledge of the local specific interfacial area is thus 
often required for a detailed analysis and prediction of the behavior of a two-phase flow system. 
This paper describes a method for measurement of local specific interfacial area using a 
quadruple-sensor electrical resistivity probe. 

2. F O R M U L A T I O N  

According to Ishii (1975), the time-average of the specific interfacial area at a fixed position in 
space x0 is given by 

1 1 N 1 
z;=L  I,,,.,l' tu 

where T is the length of the time interval over which the time averaging is considered, N is the 
number of times over the averaging period T that an interface passes through xo and v~ and n are 
the velocity and outward-directed unit normal, respectively, of an interface at x0. The r.h.s, of  [1] 
shall be related to measurable quantities. 

Let f (x ,  t ) =  0 represent an interface. An event occurs at x0 when an interface passes through 
x0. The interface which pertains to the j t h  time an event occurs at x0 is referred to as the j t h  
interface fj (Xo, t o t )=  0. Assume that f: is differentiable at x = x0 and t = tot. Upon taking the 
material derivative of  f at x = x0 and t = to j ,  one finds that 

~(x0, tot) 
vii (Xo, tot)" n: (xo, tot) = ] Vfj (Xo, tot)l" [21 
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Figure 1 

Substitution of [2] into [1] then gives 

L-:-- LI o,,0j)l 
[3] 

Suppose now that the j th  interface passes through three adjacent fixed points in space Xl, x2 and 
x3, at times tlj, t2/and t3j  , respectively, as shown in figure 1; that is, f : (x , ,  tkj)= 0, k - 1, 2, 3. If 
the distances sk = Ix, - Xo ], k = 1, 2, 3, and the time differences At,j --- tkj - to j, k = 1, 2, 3, are small 
in comparison with the length scale and the time scale, respectively, of the system under 
consideration, then each off:  (x,, tkj), k = 1, 2, 3, can be written as a Taylor series expansion about 
x = x 0 a n d  t= t0 j :  

f: (xk, t,j) =f :  (Xo, toj) + s, Vf: (Xo, toj)' ~, + Atkj ~ (Xo, toj) 

+ higher-order terms, k = 1, 2,3, [4] 

where Vf: (Xo, toj)" ~k denotes the directional derivative of f :  in the direction of the unit vector Ck 
which is parallel to the line passing through Xo and x,. Neglecting the higher-order terms in [4] 
and making using of the fact that f:(Xk, tkj)=O, k = 0 , 1 , 2 , 3 ,  one obtains the following 
relation: 

-¢J (X0, to j) 
dt Sk 

Atkj V£ (Xo, toj) ' ~, 

- "  (Xo, to j) 63t 

= -- ]Vf:(Xo,/oj)lnj(Xo, toj)" Ck' 
k = 1, 2, 3. [5] 

In terms of the rectangular cartesian components ¢kx, ¢,y and ¢k.- of  ~, and the direction cosines 
cos ~j, cos flj, and cos 7j of  nj, [5] can be rewritten as 

~,~ cos ~j + ~,.,. cos/~j + G.- cos ~,j = 
(Xo, to j) 

c~t At,j 

[ (Xo, to j)[ ' 
k = 1, 2, 3, [6] 
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which can then be solved, provided that the three unit vectors ¢1, ¢2 and ¢3 are linearly independent, 
to give 

and 

where 

afj (Xo, toA 
dt A~j 

c o s  ~j = - ]Vfj(Xo,  toj)l Ao '  

COS ~j = - -  

c~fj (xo, t0y) 
at A2~ 

Ivfy(xo, toj)l Ao 

COS ~j = 
~-~ (Xo, to j) 

A3/ 

IWj(Xo, t0j)l h0' 

a 0 = 

~lx ~ly ~lz 

~2~ 
~3z 

[7] 

[8] 

[9] 

[lOl 

AIj--- 

At l---2J ~ly 

SI 

At2----2 ~2y 
$2 

At3"--2J ~3y 
33 

~2z ' [ll] 

and 

a2. / = 

A3j = 

~lx Attj ¢I~ 
St 

~2x At2j ~2z 
$2 

~3x At3j ~3z 
S 3 ' 

~lx ely Atl--2 
$2 

~2.~ ~2y At2......_jj 
S2 

~3x ~3y At3"---2 
$3 

[12] 

[13] 

It follows from the identity cos 2 ~j + cos 2///+ COS 2 ~j ~ 1 and [3] that 

1 1 t¢ 
= r--T~0 I j~, ~/A~j + A,~j + A~3j. [14] L~ 

Equation [14] indicates that 1/L, can be unambiguously determined from three sets of  measurable 
quantities Atlj, At2j and At3j, j = 1 . . . . .  N, provided that the passage of interfaces through fixed 
locations in a two-phase flow field can be detected experimentally. Recall that only two assumptions 
have been made in arriving at [14]. The two assumptions are: (1)fj is differentiable at x = x0 and 
t = t0j; and (2) sk and Atkj, k = 1, 2, 3, are small enough to allow the higher-order terms in [4] to 
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be neglected. Inasmuch as the shape of the interfaces has no bearing upon the derivation of [14], 
the range of applicability of [14] covers all two-phase flow patterns. For the particular case of 
vertical flow of bubbly mixtures consisting of spherical bubbles it is possible to determine 1/Ls from 
a single set of measurement of Atkj alone (Tan & Ishii 1989). 

3. M E A S U R E M E N T  METHOD 

The detection of the passage of interfaces through fixed locations in a two-phase flow field can 
be accomplished with probe techniques (Jones & Delhaye 1976), which are based on the fact that 
certain optical and electrical properties of fluids can be measured by miniature sensors. For the 
purpose of illustration, the electrical resistivity probe technique is considered in the following. This 
technique, which was first proposed by Neal & Bankoff (1963) for determination of bubble 
parameters in gas-liquid bubbly flows, consists of the continuous measurement of electricial 
resistivity in the two-phase stream by means of a sensor which is the exposed tip of an otherwise 
electrically insulated metal wire. Typical signals from an electrical resistivity probe show deviations 
from the ideal two-state square wave signals (Park et al. 1969); this deviation is to a large measure 
due to the deformation of the interface before the sensor enters from one phase into the other phase 
(Jones & Delhaye 1976). The signals are generally transformed into two-state square waves with 
the help of an on-line Schmidt trigger and then passed to other instruments for further on-line or 
off-line analysis (Werther 1974; Hoffer & Resnick 1975; Serizawa et al. 1975; Herringe & Davis 
1976; Veteau 1981). In this approach to data analysis the threshold voltage for the Schmidt trigger 
is determined beforehand through comparison of the void fraction thus obtained, which is a 
function of the threshold voltage, with that measured with other techniques. The transformation 
of a signal from its original form into that of a two-state square wave is irrevocable. It is also 
doubtful that a meaningful estimate of the additional experimental uncertainty due to electro- 
chemical phenomena on the sensor can be made. Hence, an alternative approach in which the 
original signal is digitized and stored in an on-line data acquisition microcomputer, and the 
selection of the threshold voltage is accomplished through software, is considered herein. The 
algorithm for selecting the threshold voltage is described as follows. 

Consider a gas-liquid mixture flowing upwards in a vertical test section made of circular pipes. 
A quadruple-sensor electrical resistivity probe is made to traverse along the diameter of the cross 
section. The locations of the tips of the four sensors are identified with the four fixed locations x,, 
k = 0, 1, 2, 3, considered in section 2. In terms of cylindrical coordinates they are represented as 
xk = (z,, r~,m)), k = 0, 1, 2, 3, where r ~m) denotes a fixed radial coordinate which corresponds to the 
m th traversing stop of the probe. Suppose that there are a total of M stops and that the sampling 
period at each stop remains constant at T for an experimental run. Let V~m>(t) denote the 
time-history records of signals from the four sensors at the mth stop, i.e. 

T T 
v ~ m ) ( / )  = Vk(Zk ,  r~ m), t ) ,  t Ira) --  -~ ~ t ~ l ~m) q- -~, 

and let Vkv denote threshold voltages which apply to V~, "), m = 1 . . . . .  M. 
As shown in figure 2, the gas-contact period of a sensor over the sampling period T is a function 

of the threshold voltage associated with that sensor. Consequently, the local void fractions E~, "), 
which are defined as 

E~ ~) ---- Ek(Z,, r~ m), I Ira)) 

def I N -  I 
= ~j=j~oaa(t~7}+l-t~"~)),__ k =0,  1,2,3, [15] 

are functions of the threshold voltages Vkr, k = 0, 1, 2, 3, respectively. Furthermore, when the 
process is ergodic, which is assumed to be the case, E~ m) do not depend on t ~") so they can be 
averaged over the radial position to give line-averaged void fractions 

| M - I  
(E,)l ~ ~-~ ~ l  (r~m+ I) _ r~m))(E~m+ I) + E~m)), k = 0, 1, 2, 3. [16] 
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The line-averaged void fractions (ck), thus obtained are also functions of the threshold voltages 
VkT, k = 0, 1,2,3, respectively. The threshold voltages vkT are adjusted until agreement is reached 
between (ck), and the line-averaged void fractions (ck)expt obtained directly (and concurrently) 
by means of one of the techniques for measurement of line void fraction. Specifically, the method 
of adjustment consists of an iterative scheme for approximating the roots of the nonlinear 
equations: 

[171 

In regions where the flow is fully developed, the volume-averaged void fraction is identical to the 
line-averaged ones; the adjustment of V,,, k = 0, 1, 2, 3, can be based on the comparison between 
the volume-averaged void fraction determined from concurrent differential pressure measurements 
and (Q),, k = 0, 1, 2, 3, respectively. Once vkT are determined, tkj, j = 1, . . . , N, are determined 
and the local specific interfacial area can be calculated with the help of [14]. 

Note that the practicability of [14] depends on the experimental capability of measuring At,. 
As At, are functions of the threshold voltages VkT, the resistivity probe technique is not a 
stand-alone one for measurement of local specific interfacial area. The accuracy of the local specific 
interfacial area thus measured is necessarily, at best, as good as that of the void fraction 
measurement, 

It is worthwhile at this point to make some remarks about the conditions under which the 
assumption that sk and At,, k = 1, 2, 3, are small in comparison with the length scale and the time 
scale, respectively, of the physical system under consideration can be justified. In accordance with 
the basic concept of the two-fluid model, a physical dimension which characterizes the degree of 
dispersion or degree of separation, e.g. a typical bubble diameter in the case of bubbly flow or a 
typical liquid film thickness in the case of annular flow, can be considered as the length scale and 
the time scale can be regarded as a measure of the time it takes for the two-phase mixture to travel 
a distance equal to the length scale. Thus, a bubbly flow with bubbles with diameters of the order 
of 1 mm entails a probe in which the distances between the tips of sensors are of the order of 
0.1 mm. When the distances are fixed to be of the order of 1 mm, the diameters of bubbles should 
be of the order of 1 cm for the probe techniques for measurement of local specific interfacial area 
to be applicable. 

It should also be emphasized that the resistivity probe technique is an intrusive one. The first 
sensor could slow down the interfaces, thereby resulting in longer At, and therefore larger l/L,. 
In the case of bubbly flow, the probe could detour smaller bubbles, thereby giving smaller l/L,. 
This latter effect on measured l/L, is very dependent on the bubble size distribution. 



358 BRIEF COMMUNICATION 

4. SUMMARY 

A mathematical relation between local specific interfacial area 1/Ls and measurable quantities 
is derived based on kinematics and geometry alone. The relation indicates that 1/Ls can be 
unambiguously measured provided that the passage of interfaces through fixed locations in the 
two-phase field can be detected experimentally. A quadruple-sensor electrical resistivity probe 
technique for measurement of l/Ls is described. Limitations of the technique are briefly discussed. 
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